nano29.ru – Личность. Саморазвитие. Успех и удача. Свой бизнес

Личность. Саморазвитие. Успех и удача. Свой бизнес

Гиперзвуковая скорость. Гиперзвук. Сколько это и когда мы полетим? Научно-технический задел России – гиперзвуковые самолёты

Сначала стоит конечно определиться, гиперзвук это сколько? Принято считать, что гиперзвуковая скорость, это скорость выше 5 М, то есть больше пяти чисел Маха , а если совсем просто, то это скорость в пять раз превышающая скорость звука.

Вам интересно сколько это в километрах в час? От 5380 км/ч до 6120 км/ч в зависимости от параметров среды (для самолета — воздуха), то есть от плотности воздуха которая разная на разных высотах полета. Так что, для простоты восприятия, все таки лучше пользоваться числами Маха. Если скорость воздушного судна превысила значение 5 М — это гиперзвуковая скорость.

Собственно почему именно 5 М? Значение 5 было выбрано потому, что при такой скорости начинают наблюдаться ионизация потока газа и другие физические изменения, что конечно влияет на его свойства. Эти изменения особенно заметны для двигателя, обычные ТРД (турбореактивные двигатели) просто не могут работать на такой скорости, нужен принципиально иной двигатель, ракетный или прямоточный (хотя на самом деле он и не такой уж другой, просто в нем отсутствует компрессор и турбина, а свою функцию он выполняет так же: сжимает воздух на входе, смешивает его с топливом, сжигает в камере сгорания, и получает реактивную струю на выходе).

Фактически, прямоточный двигатель, это труба с камерой сгорания, очень просто и эффективно на большой скорости. Вот только у такого двигателя есть огромный недостаток, ему для работы нужна определенная начальная скорость (своего компрессора то нет, нечем сжимать воздух на малой скорости).

История скорости

В 50-е годы шла борьба за достижения скорости звука. Когда инженеры и ученые поняли, как ведет себя самолет при скорости выше скорости звука и научились создавать летательные аппараты предназначенные для таких полетов, пришло время идти дальше. Заставить самолеты летать еще быстрее.


В 1967 году американский экспериментальный летательный аппарат X-15 достиг скорости 6,72 М (7274 км/ч). Он был оснащен ракетным двигателем и летал на высотах от 81 до 107 км (100 км, это линия Кармана, условная граница атмосферы и космоса). Поэтому, правильнее называть X-15 не самолетом, а ракетопланом. Взлететь самостоятельно он не мог, ему требовался самолет-разгонщик. Но все таки, это был гиперзвуковой полет. Причем, летали X-15 с 1962 по 1968 годы, а 7 полетов на X-15 совершил тот самый Нил Армстронг.

Стоит понимать, что полеты вне атмосферы, какими бы быстрыми они не были не корректно считать гиперзвуковыми, ведь плотность среды в которой движется летательный аппарат очень мала. Эффектов присущих сверхзвуковому или гиперзвуковому полету просто не будет.


В 1965 году YF-12 (прототип знаменитого SR-71) достиг скорости 3,331,5 км/ч, а в 1976 уже сам серийный SR-71 — 3,529,6 км/ч. Это "всего лишь" 3,2-3,3 М. Далеко не гиперзвук, но уже для полетов на этой скорости в атмосфере пришлось разрабатывать специальные двигатели, которые на малых скоростях работали в обычном режиме, а на высоких в режиме прямоточного двигателя, а для пилотов — специальные системы жизнеобеспечения (скафандры и системы охлаждения), так как самолет нагревался слишком сильно. Позднее, эти скафандры использовались для проекта Шаттл. Очень долгое время SR-71 являлся самым скоростным самолетом в мире (летать он перестал в 1999 году).


Советский Миг-25Р теоретически мог достичь скорости в 3,2 М, но эксплуатационная скорость ограничивалась значением 2,83 М.


В те же 60-е в США и СССР существовали проекты космических проектов X-20 «Dyna Soar» и "Спираль" соответственно. Для Спирали изначально предполагалось использование гиперзвукового самолета-разгонщика, потом сверхзвукового, а потом проект вообще закрыли. Та же судьба постигла и американский проект.

Вообще проекты именно гиперзвуковых летательных аппаратов того времени были связны с полетами вне атмосферы. Иначе и быть не может, на "малых" высотах слишком высока плотность и соответственно сопротивление, что приводит ко многим негативным факторам, которые в то время преодолеть не смогли.

Настоящее время

За всеми перспективными исследованиями, как обычно стоят военные. В случае с гиперзвуковыми скоростями, это тоже имеет место. Сейчас исследования ведутся в основном в направлении космических аппаратов, гиперзвуковых крылатых ракет и так называемых гиперзвуковых боевых блоках. Теперь уже речь идет о "настоящем" гиперзвуке, полетах в атмосфере.

Обратите внимание, работы по гиперзвуковым скоростям были в активной фазе в 60-70 годах, потом все проекты были закрыты. Вернулись к скоростям выше 5 М только на рубеже 2000-х годов. Когда технологии позволили создавать эффективные прямоточные двигатели для гиперзвуковых полетов.

В 2001 первый полет совершил беспилотный летательный аппарат с прямоточным двигателем

Boeing X-43. Уже в 2014 он разогнался до скорости в 9,6 М (11 200 км/ч). Хотя проектировался X-43 для скоростей в 7 раз выше скорости звука. При этом рекорд был поставлен не в космосе, а на высоте всего 33 500 метров.

В 2009 году начались испытания прямоточного двигателя для крылатой ракеты компании Boeing X-51A Waverider. В 2013 году аппарат X-51A разогнался до гиперзвуковой скорости — 5,1 М на высоте 21 000 метров.

Аналогичные проекты на разных стадиях осуществляют и другие страны: Германия (SHEFEX), Великобритания (Skylon), Россия («Холод» и «Игла»), Китай (WU-14) и даже Индия (Брамос), Австралия (ScramSpace) и Бразилия (14-X).

Интересный проект летательного аппарата для полета с гиперзвуковой скоростью в атмосфере, американский Falcon HTV-2, считается провальным. Предположительно, Falcon смог разогнаться до огромной для атмосферы скорости — 23 М. Но только предположительно, так как все экспериментальные аппараты просто напросто сгорели.

Все перечисленные летательные аппараты (кроме Skylon) не могут самостоятельно набрать необходимую для работы прямоточного двигателя скорость и используют разные ускорители. Но Skylon пока только проект не сделавший пока ни единого испытательного полета.

Далекое будущее гиперзвука

Существуют и гражданские проекты гиперзвуковых самолетов для перевозки пассажиров. Это европейские SpaceLiner с одним типом двигателя и ZEHST который должен использовать целых 3 типа двигателя на разных режимах полета. Также над своими проектами работают и другие страны.

Такие лайнеры предположительно смогут доставить пассажиров из Лондона в Нью-Йорк всего лишь за час. Полетать на таких самолетах мы сможем не раньше 40-х, 50-х годов 21 века. А пока гиперзвуковые скорости остаются уделом военных либо космических аппаратов.

Как то мы с вами обсуждали довольно скептическое мнение , однако работы эти никто не останавливает и все движутся вперед.

По данным источника в оборонно-промышленном комплексе, новейшая российская гиперзвуковая противокорабельная ракета «Циркон» достигла на испытаниях восьми скоростей звука.

По словам источника, «в ходе испытаний ракеты было подтверждено, что ее скорость на марше достигает 8 Махов», передает ТАСС. Кроме того, как отметил источник, ракеты «Циркон» могут запускаться из универсальных пусковых установок 3С14, которые также используются для ракет «Калибр» и «Оникс».

Дальность стрельбы «Цирконом», согласно открытым данным, составляет около 400 километров. В феврале осведомленный источник сообщал, что гиперзвуковая ракета «Циркон», предназначенная для подводных лодок типа «Ясень» и «Хаски», впервые может быть запущена с морского носителя весной этого года. В апреле 2016 года источник в российском оборонно-промышленном комплексе отмечал, что «Циркон» должен быть запущен в серийное производство в 2018 году.

Американская X-51AWaverider при последнем тестовом полете показала скорость 4,8 МАХ.

А теперь немного подробнее про "Циркон".


Число «Маха» или «М» определяет отношение локальной скорости потока к скорости звука - 331 м/с. Превысить скорость звука в шесть-восемь раз - одна из глобальных задач развития современного авиа и ракетостроения. С появлением гиперзвуковых летательных аппаратов конструкторы связывают прорыв в новое, 6-е поколение авиационной техники. С военной точки зрения гиперзвуковые летательные аппараты крайне эффективное ударное средство. Гиперзвуковой полет неразличим для современных средств радиолокации. Не существует и даже не предвидится создание средств перехвата подобных ракет.

Глобальное разоружение

В СССР это поняли еще в 60-х годах прошлого века, когда проектировали расположенную под Москвой систему НПРО с ракетами А-135. Система перехвата входящих в атмосферу на скорости 5-10 км в секунду ядерных боеголовок решена на комплексе весьма своеобразно. Если электроника все равно их не видит, то и ракету надо нацеливать не «в копеечку», а «в белый свет», видимо, решили конструкторы и установили на противоракете ядерную боевую часть. То есть, зная о ядерном нападении, советская противоракета выстреливалась в район предполагаемого нахождения вражеских ядерных блоков с тем, чтобы уничтожить их с помощью встречного ядерного взрыва в атмосфере. Система эта, напомним, до сих пор стоит на вооружении. И считается единственной эффективной системой НПРО в мире.

«Чтобы обнаружить атакующие цели, навести на них противоракеты и сделать встречный залп, есть несколько десятков минут, - рассказал телеканалу «Звезда» Владимир Дворкин, до 2001 года возглавлявший 4-й ЦНИИ Минобороны (институт, занимавшийся проблемами развития и применения ядерного оружия). - Американская морская ракета «Трайдент» летит до нас 15-20 минут, сухопутный «Минитмен-3» - 25-35 минут».

Это снижает вероятность «разоружения противника», говорит эксперт, у нас всегда остается время на то, чтобы подготовиться, встретить эти ракеты и хотя бы большую часть из них уничтожить. Следовательно, сохраняется возможность ответного ядерного удара по территории США. Поэтому в Америке сегодня разрабатывается новая концепция ядерной войны. В рамках программы «молниеносного глобального удара» Вашингтон планирует получить оружие, способное пролететь расстояние от США до России за вдвое, а то и втрое меньшее время, для того чтобы у противника просто не осталось ни малейших шансов отреагировать. Достичь этого предполагается за счет создания гиперзвуковых летательных аппаратов.

В отличие от баллистических ракет, гиперзвуковые будут стартовать с бомбардировщиков, а также наземных пусковых Mk-41. Это должно сделать невозможным обнаружение пуска существующими космическими и наземными средствами предупреждения о ракетном нападении. А значит, создаст иллюзию возможности безнаказанно начать и выиграть ядерную войну. Эта теория очень популярна в экспертном сообществе США.

В итоге только в США различными ведомствами разрабатывается сразу несколько перспективных проектов: X-43A (НАСА), X-51A (ВВС), AHW (Сухопутные войска), ArcLight (DARPA, ВМС), Falcon HTV-2 (DARPA, ВВС). Их появление, по мнению специалистов, позволит создать гиперзвуковые авиационные крылатые ракеты большой дальности, морскую крылатую ракету в противокорабельном и ударном против наземных целей вариантах к 2018-2020 годам, разведывательный самолет - к 2030 году.

Над выходом на гиперзвук бьется Франция. Китай недавно испытал планирующий аппарат WU-14, сумевший достичь гиперзвуковых скоростей. Ну и, конечно, Россия.

Гонка технологий

«Обычно сверхзвуковые крылатые ракеты летят на скорости 2-3 маха, - говорит кандидат физико-математических наук Николай Григорьев. - Мы хотим, чтобы наши аппараты летали со скоростью более 6 махов. При этом этот полет должен быть длительным. Не менее 7-10 минут, за которые аппарат должен самостоятельно развить скорость в более полутора тысяч метров в секунду».

Первый гиперзвуковой аппарат был создан в СССР еще в конце 70-х годов прошлого века. В 1997 году конструкторы дубнинского МКБ «Радуга» впервые показали его на авиасалоне МАКС. Представлен он был как система нового класса - гиперзвуковой экспериментальный летательный аппарат (ГЭЛА) Х-90. На Западе его называли AS-19 Koala. По данным предприятия, ракета летела на дальность до 3 тыс. км. Несла две боеголовки с индивидуальным наведением, способные поразить цели на удалении 100 км от точки разделения. Носителем Х-90 мог стать удлиненный вариант стратегического бомбардировщика Ту-160М.

В начале 90-х годов прошлого века МКБ провело совместную работу с немецкими инженерами по проблеме гиперзвука на базе другой своей ракеты Х-22 «Буря» (по классификации НАТО - AS-4 Kitchen («Кухня»). Эта сверхзвуковая крылата ракета входит в состав штатного вооружения дальнего бомбардировщика Ту-22М3. Может летать на 600 км и нести термоядерную или обычную боевую часть весом в 1 тонну. Ракета предназначена для уничтожения авианосцев США. В ходе эксперимента, при установленных на ракету дополнительных разгонных блоках машину удалось вывести на гиперзвуковой режим полета.

Кроме того, как напоминает Григорьев, в СССР был создан космический корабль многоразового использования «Буран», который при входе в плотные слои атмосферы развивал скорость в 25 махов. Сегодня, по словам эксперта, задача стоит в том, чтобы сделать подобный полет активным, то есть машина должна не просто «планировать», а самостоятельно развивать и поддерживать такую скорость, менять направление полета.

От «Коалы» до «Ярса»

Испытания гиперзвуковых аппаратов - тайна за семью печатями. Судить о том, как обстоят дела с их разработкой, можно только по сообщениям американцев об успехе или неудаче в ходе тех или иных испытательных пусков. Последний такой эксперимент они провели в августе. Пуск ракеты Х-43А был произведен с полигона Кодьяк на Аляске. Ракета разрабатывалась как совместный проект американской армии и лаборатории Sandia National в рамках концепции «Быстрого глобального удара». Ее первое испытание произошло в ноябре 2011 года. Предполагалось, что в ходе нынешних испытаний ракета, набрав скорость около 6,5 тыс. км/час, поразит учебную цель на тихоокеанском атолле Кваджалейн. В итоге аппарат проработал всего 7 секунд перед тем, как сгорел в атмосфере. Тем не менее, в США назвали этот полет успешным - машина продемонстрировала способность набрать требуемое ускорение.

Советская Х-90, о которой хоть что-то доподлинно известно, летала дальше и дольше. Как говорят конструкторы, машина быстро нагревалась от сопротивления воздуха, что разрушало аппарат или приводило в нерабочее состояние механизмы внутри корпуса. Для достижения гиперзвука для прямоточного реактивного ракетного двигателя требовался водород или хотя бы топливо, состоящее в значительной мере из водорода. А это крайне сложно осуществить технически, так как газообразный водород имеет малую плотность. Хранение жидкого водорода создавало другие непреодолимые технические сложности. Ну и, наконец, во время гиперзвукового полета вокруг Х-90 возникало плазменное облако, которое сжигало радиоантенны, что приводило к потере управляемости аппаратом.

Впрочем, эти недостатки в итоге превратили в достоинства. Проблему охлаждения корпуса и водородного топлива решили тем, что в качестве его компонентов стали использовать смесь керосина и воды. Она после нагрева подавалась в специальный каталитический мини-реактор, в котором проходила эндотермическая реакция каталитической конверсии, в результате которой вырабатывалось водородное топливо. Этот процесс приводил к сильному охлаждению корпуса аппарата. Не менее оригинально была решена проблема обгорания радиоантенн, в качестве которых стали использовать само плазменное облако.

При этом плазменное облако позволило аппарату не только двигаться в атмосфере со скоростью 5 км в секунду, но и делать это «ломаными» траекториями. Машина могла резко менять направление полета. Кроме того, плазменное облако еще и создавало эффект невидимости аппарата для радаров. Х-90 не поступила на вооружение, работа над ракетой была приостановлена еще в 1992 году.

Но принципы ее работы очень похожи на описание действий маневрирующих ядерных боеголовок баллистических ракет «Тополь-М», «Ярс» и новой РС-26. Минобороны неоднократно приводило их, как пример преодоления любой системы противоракетной обороны. Маневрирующий блок в любую секунду может «вильнуть», непредсказуемо изменив направление полета, что гарантированно обеспечивает поражение цели. Ни одна система НПРО не способна просчитать такую траекторию и навести на атакующий блок противоракеты.

Боевой «Утконос»

В прошлом году в Минобороны сообщили, что гиперзвуковым оружием будут оснащать, в первую очередь, самолеты дальней авиации. На тот момент ракеты уже существовали, правда, их полет на гиперзвуке продолжался всего несколько секунд. Об этом неоднократно заявлял и вице-премьер Дмитрий Рогозин. Однако каких либо конкретных деталей ни военные, ни вице-премьер, ни представители промышленности не приводили.

О текущих успехах в создании гиперзвуковых летательных аппаратов можно судить только по косвенным признакам. Например, этим летом корпорация «Тактическое ракетное вооружение», Минобороны и Минпромторг отчитались, что согласовали программу создания гиперзвуковых ракетных технологий. В разработку перспективной техники будет вложено более 2 млрд. рублей, а первый аппарат появится не позднее 2020 года. Что это будут за аппараты, какие характеристики будут иметь и для каких целей не объявляется.

О том, что задел, что называется, имеется, можно судить хотя бы по выставке МАКС в подмосковном Жуковском. В 2011 году Центральный институт авиационного моторостроения из подмосковного Лыткарино демонстрировал целый ряд перспективных гиперзвуковых аппаратов. На стенде института были выставлены несколько макетов перспективных ракет, больше похожих не на классические сигарообразные ракеты, а на шедевр скульптора авангардиста, взявшего в прообраз своего творения австралийского зверька утконоса - расплющенный лопатовидный «нос» обтекателя, рубленные формы самого корпуса ракет. Тогда представитель института Вячеслав Семенов сообщил, что в 2012 году Минобороны будет представлен полностью годный летный образец гиперзвуковой крылатой ракеты. Об этом же говорил и Борис Обносов. О чем конкретно шла речь - неизвестно. Никаких официальных сообщений о новой ракете в печати не было. Однако неоднократно проскакивало название перспективного комплекса «Циркон».

По косвенным признакам в его основу входит ракета, созданная на базе сверхзвуковой противокорабельной ракеты «Яхонт» и ее российско-индийского аналога «БраМос». Индийская BrahMos Aerospace Limited неоднократно анонсировала работы по созданию гиперзвукового варианта своей продукции. Демонстрировал ее макет все тот же «Утконос».

В будущем ракеты "Циркон" установят на новейшие российские многоцелевые атомные подводные лодки пятого поколения "Хаски", которые сейчас находятся в разработке в конструкторском бюро "Малахит". Ракетный крейсер «Адмирал Нахимов», проходящий ремонт с модернизацией в Северодвинске, к 2018 году оснастят универсальным корабельным стрельбовым комплексом, позволяющим применять ракеты «Калибр», «Оникс» и перспективные гиперзвуковые ПКР «Циркон».


источники

Которое определяется следующим образом: , где u - скорость движения потока или тела, - скорость звука в среде. Звуковая скорость определяется как , где - показатель адиабаты среды (для идеального n-атомного газа, молекула которого обладает степенями свободы он равен ). Здесь - полное число степеней свободы молекулы. При этом, количество поступательных степеней свободы . Для линейной молекулы количество вращательных степеней свободы , количество колебательных степеней свободы (если есть) . Для всех других молекул , .

При движении в среде со сверхзвуковой скоростью тело обязательно создаёт за собой звуковую волну. При равномерном прямолинейном движении фронт звуковой волны имеет конусообразную форму, с вершиной в движущемся теле. Излучение звуковой волны обуславливает дополнительную потерю энергии движущимся телом (помимо потери энергии вследствие трения и прочих сил).

Аналогичные эффекты испускания волн движущимися телами характерны для всех физических явлений волновой природы, например: черенковское излучение , волна, создаваемая судами на поверхности воды.

Классификация скоростей в атмосфере

При обычных условиях в атмосфере скорость звука составляет примерно 331 /сек . Более высокие скорости иногда выражаются в числах Маха и соответствуют сверхзвуковым скоростям, при этом гиперзвуковая скорость является частью этого диапазона. НАСА определяет «быстрый» гиперзвук в диапазоне скоростей 10-25 М , где верхний предел соответствует первой космической скорости . Скорости выше считаются не гиперзвуковой скоростью, а «скоростью возврата » космических аппаратов на Землю .

Сравнение режимов

Режим Числа Маха км / /сек Общие характеристики аппарата
Дозвук <1.0 <1230 <340 Наиболее часто самолет с пропеллером или с ТВД , прямые или скошенные крылья.
Трансзвук (англ.) русск. 0.8-1.2 980-1470 270-400 Воздухозаборники и слегка стреловидные крылья, сжимаемость воздуха становится заметной.
Сверхзвук 1.0-5.0 1230-6150 340-1710 Более острые края плоскостей, хвостовое оперение цельноповоротное .
Гиперзвук 5.0-10.0 6150-12300 1710-3415 Охлаждаемый никелево-титановый корпус, небольшие крылья. (X-43)
Быстрый гиперзвук 10.0-25.0 12300-30740 3415-8465 Кремниевые плитки для теплозащиты, несущее тело аппарата вместо крыльев.
«Скорость возврата» >25.0 >30740 >8465 Аблятивный тепловой экран , нет крыльев, форма капсулы.

Сверхзвуковые Объекты

Космические корабли и их носители, а также большинство современных истребителей разгоняются до сверхзвуковых скоростей. Также было разработано несколько пассажирских сверхзвуковых самолетов - Ту-144 , Конкорд , Аерион. Скорость вылета пули большинства образцов современного огнестрельного оружия больше М1.

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Электрическое напряжение
  • Число Маха

Смотреть что такое "Сверхзвуковая скорость" в других словарях:

    СВЕРХЗВУКОВАЯ СКОРОСТЬ - скорость движения среды или тела в среде, превышающая скорость звука в данной среде. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    СВЕРХЗВУКОВАЯ СКОРОСТЬ - СВЕРХЗВУКОВАЯ СКОРОСТЬ, скорость, превышающая локальную скорость звука. В сухом воздухе при температуре 0 °С эта скорость составляет 330 м/с или 1188 км/ч. Ее величина обычно выражается числом МАХА, которое представляет собой отношение скорости… … Научно-технический энциклопедический словарь

    Сверхзвуковая скорость - 1) скорость V газа, превышающая местную скорость звука a: V > a (M > 1, M Маха число). 2) С. с. полёта скорость летательного аппарата, превышающая скорость звука в невозмущенном потоке (часто за полёт со С. с. понимают полёт со скоростью,… … Энциклопедия техники

    Сверхзвуковая скорость - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях. Характеризуется значениями Маха числа (М); имеет значения М от 1 до 5. Скорость, превышающая скорость звука более чем в 5 раз… … Морской словарь

    СВЕРХЗВУКОВАЯ СКОРОСТЬ - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях (скорость звука в воздухе при 0°С равна 331 м/с). Характеризуется числом Маха М (), имеющим значения от 1 до 5. Скорость, превышающая М… … Большая политехническая энциклопедия

    сверхзвуковая скорость - Скорость газа, превышающая местную скорость звука, . [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины характеристики течения газа EN supersonic velocity … Справочник технического переводчика

    сверхзвуковая скорость - viršgarsinis greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Skraidymo aparato greitis, viršijantis garso greitį terpėje arba aplinkoje, kurioje jis juda. atitikmenys: angl. hypersonic velocity; supersonic velocity vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    сверхзвуковая скорость - viršgarsinis greitis statusas T sritis fizika atitikmenys: angl. hypersonic velocity; supersonic velocity vok. Überschallgeschwindigkeit, f; Ultraschallgeschwindigkeit, f rus. сверхзвуковая скорость, f pranc. vitesse hypersonique, f … Fizikos terminų žodynas

    сверхзвуковая скорость - viršgarsinis greitis statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Greitis, viršijantis garso greitį. atitikmenys: angl. supersonic speed; velocity rus. сверхзвуковая скорость … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

Обычный пассажирский самолет летает со скоростью порядка 900 км/час. Реактивный военный истребитель может развивать примерно втрое большую скорость. Однако современные инженеры из РФ и других стран мира активно разрабатывают еще более скоростные машины — гиперзвуковые самолеты. В чем специфика соответствующих концепций?

Критерии гиперзвукового самолета

Что такое гиперзвуковой самолет? Под таковым принято понимать аппарат, способный летать со скоростью, многократно превышающий таковую для звука. Подходы исследователей к определению конкретного ее показателя разнятся. Распространена методология, по которой самолет следует считать гиперзвуковым, если он кратно превышает скоростные показатели самых быстрых современных сверхзвуковых аппаратов. Которые составляют порядка 3-4 тыс. км/ч. То есть гиперзвуковой самолет, если придерживаться данной методологии, должен развивать скорость от 6 тыс. км/ч.

Беспилотные и управляемые аппараты

Подходы исследователей могут разниться также в аспекте определения критериев отнесения того или иного аппарата к самолетам. Есть версия, что к таковым правомерно относить только те машины, которые управляются человеком. Есть точка зрения, по которой самолетом также можно считать и беспилотный аппарат. Поэтому некоторые аналитики классифицируют машины рассматриваемого типа на те, что подлежат управлению человеком, и те, которые функционируют автономно. Подобное деление может быть оправдано, поскольку беспилотные аппараты могут обладать намного более внушительными техническими характеристиками, например, в части перегрузок и скорости.

Вместе с тем многие исследователи рассматривают гиперзвуковые самолеты как единую концепцию, для которой ключевой показатель — скорость. Неважно, сидит ли за штурвалом аппарата человек либо машина управляется роботом — главное, чтобы самолет был в достаточной мере быстрым.

Взлет — самостоятельный или с посторонней помощью?

Распространена классификация гиперзвуковых летательных аппаратов, в основе которой — отнесение их к категории тех, что способны взлетать самостоятельно, либо тех, которые предполагают размещение на более мощном носителе — ракете либо грузовом самолете. Есть точка зрения, по которой к аппаратам рассматриваемого типа правомерно относить главным образом те, что способны взлетать самостоятельно либо при минимальном задействовании иных типов техники. Однако те исследователи, которые считают, что основной критерий, характеризующий гиперзвуковой самолет, — скорость, должен быть первостепенным при любой классификации. Будь то отнесение аппарата к беспилотным, управляемым, способным взлетать самостоятельно либо с помощью других машин — если соответствующий показатель достигает указанных выше значений, то значит, речь идет о гиперзвуковом самолете.

Основные проблемы гиперзвуковых решений

Концепциям гиперзвуковых решений — много десятилетий. На протяжении всех лет разработки соответствующего типа аппаратов мировые инженеры решают ряд существенных проблем, объективно мешающих поставить выпуск «гиперзвука» на поток — подобно организации производства турбовинтовых самолетов.

Основная сложность в конструировании гиперзвуковых самолетов — создание двигателя, способного быть в достаточной мере энергоэффективным. Другая проблема — выстраивание необходимой аппарата. Дело в том, что скорость гиперзвукового самолета в тех значениях, что мы рассмотрели выше, предполагает сильный нагрев корпуса за счет трения об атмосферу.

Сегодня мы рассмотрим несколько образцов удачных прототипов летательных аппаратов соответствующего типа, разработчики которых смогли значительно продвинуться вперед в части успешного решения отмеченных проблем. Изучим теперь наиболее известные мировые разработки в части создания гиперзвуковых летательных аппаратов рассматриваемого типа.

от Boeing

Самый быстрый гиперзвуковой самолет в мире, как считают некоторые эксперты, это американский Boeing X-43A. Так, в ходе тестирования данного аппарата было зафиксировано, что он достигал скорости, превышающей 11 тыс. км/час. То есть примерно в 9,6 раза быстрее

Чем особенно примечателен гиперзвуковой самолет X-43A? Характеристики данного летательного аппарата таковы:

Предельная скорость, зафиксированная на тестах, - 11 230 км/час;

Размах крыльев - 1,5 м;

Длина корпуса - 3,6 м;

Двигатель - прямоточный, Supersonic Combustion Ramjet;

Топливо - атмосферный кислород, водород.

Можно отметить, что рассматриваемый аппарат относится к самым экологичным. Дело в том, что используемое топливо практически не предполагает выделения вредных продуктов горения.

Гиперзвуковой самолет X-43A был разработан совместными усилиями инженеров NASA, а также компаний Orbical Science Corporation и Minocraft. создавался порядка 10 лет. В его разработку было вложено около 250 млн. долларов. Концептуальная новизна рассматриваемого самолета в том, что он был задуман с целью испытания новейшей технологии обеспечения работы двигательной тяги.

Разработка от Orbital Science

Компания Orbital Science, которая, как мы отметили выше, приняла участие в создании аппарата X-43A, успела также создать свой гиперзвуковой самолет — X-34.

Его предельная скорость — более 12 тыс. км/ч. Правда, в ходе практических тестов она не была достигнута — более того, не удалось достичь показателя, который показан самолетом X43-A. Рассматриваемый летательный аппарат ускоряется при задействовании ракеты «Пегас», функционирующей на твердом топливе. Машина X-34 была впервые испытана в 2001 году. Рассматриваемый самолет ощутимо больше аппарата от Boeing — его длина составляет 17,78 м, размах крыльев — 8,85 м. Максимальная высота полета гиперзвуковой машины от Orbical Science — 75 километров.

Летательный аппарат от North American

Еще один известный гиперзвуковой самолет — X-15, выпущенный компанией North American. Данный аппарат аналитики относят к экспериментальным.

Он оснащен что дает повод некоторым экспертам не относить его, собственно, к классу самолетов. Однако наличие ракетных двигателей позволяет аппарату, в частности, совершать Так, во время одного из испытаний в таком режиме он был протестирован пилотами. Предназначение аппарата X-15 — исследование специфики гиперзвуковых полетов, оценка тех или иных конструкторских решений, новых материалов, особенностей управления подобными машинами в различных слоях атмосферы. Примечательно, что была утверждена еще в 1954 году. Летает X-15 со скоростью более 7 тыс. км/час. Дальность его полета — более 500 км, высота превышает 100 км.

Самые быстрые серийные самолеты

Изученные нами выше гиперзвуковые аппараты фактически относятся к категории исследовательских. Полезно будет рассмотреть некоторые серийные образцы самолетов, приближенных по характеристикам к гиперзвуковым или являющихся (по той или иной методологии) ими.

В числе подобных машин — американская разработка SR-71. Данный самолет некоторые исследователи не склонны относить к гиперзвуковым, поскольку его предельна скорость составляет порядка 3,7 тыс. км/час. В числе наиболее примечательных его характеристик — взлетная масса, которая превышает 77 тонн. Длина аппарата — более 23 м, размах крыльев — более 13 м.

Одним из самых быстрых военных самолетов считается российский МиГ-25. Аппарат может развивать скорость более 3,3 тыс. км/ч. Максимальный взлетный вес российского самолета — 41 тонна.

Таким образом, на рынке серийных решений, приближенных по характеристикам к гиперзвуковым, РФ — в числе лидеров. Но что можно сказать о российских разработках в части «классических» гиперзвуковых самолетов? Способны ли инженеры из РФ создать решение, конкурентное машинам от Boeing и Orbital Scence?

Российские гиперзвуковые аппараты

В данный момент российский гиперзвуковой самолет находится в стадии разработки. Но идет она достаточно активно. Речь идет о самолете Ю-71. Его первые испытания, судя по сообщениям в СМИ, были проведены в феврале 2015 года под Оренбургом.

Предполагается, что самолет будет использоваться в военных целях. Так, гиперзвуковой аппарат сможет при необходимости осуществлять доставку поражающих средств на значительные расстояния, вести мониторинг территории, а также задействоваться как элемент штурмовой авиации. Некоторые исследователи полагают, что в 2020-2025 гг. в РВСН поступит порядка 20 самолетов соответствующего типа.

В СМИ есть сведения о том, что рассматриваемый гиперзвуковой самолет России будет размещаться на баллистической ракете «Сармат», которая также находится на стадии проектирования. Некоторые аналитики считают, что разрабатываемый гиперзвуковой аппарат Ю-71 — это не что иное, как боеголовка, которая должна будет отделяться от баллистической ракеты на конечном участке полета, чтобы затем, благодаря высокой, характерной для самолета маневренности, преодолевать системы ПРО.

Проект «Аякс»

В числе наиболее примечательных проектов, связанных с разработкой гиперзвуковых самолетов, — «Аякс». Изучим его подробнее. Гиперзвуковой самолет «Аякс» — концептуальная разработка советских инженеров. В научной среде разговоры о ней начались еще в 80-е годы. В числе наиболее примечательных характеристик — наличие системы тепловой защиты, которая призвана защищать корпус от перегрева. Таким образом, разработчики аппарата «Аякс» предложили решение одной из «гиперзвуковых» проблем, обозначенных нами выше.

Традиционная схема тепловой защиты летательных машин предполагает размещение на корпусе особых материалов. Разработчики «Аякса» предложили иную концепцию, по которой предполагалось не защищать аппарат от внешнего нагрева, а впускать тепло внутрь машины, одновременно увеличивая ее энергоресурс. Основным конкурентом советского аппарат считался гиперзвуковой самолет «Аврора», создаваемый в США. Однако в связи с тем, что конструкторы из СССР существенно расширили возможности концепции, на новую разработку был возложен самый широкий круг задач, в частности, исследовательских. Можно сказать, что «Аякс» — гиперзвуковой многоцелевой самолет.

Рассмотрим более подробно технологические новшества, предложенные инженерами из СССР.

Итак, советские разработчики «Аякса» предложили использовать тепло, возникающее как результат трения корпуса самолета об атмосферу, преобразовывать в полезную энергию. Технически это могло быть реализовано посредством размещения на аппарате дополнительных оболочек. В результате формировалось что-то вроде второго корпуса. Его полость предполагалось заполнить неким катализатором, например, смесью горючего материала и воды. Теплоизолирующий слой, изготовленный из твердого материала, в «Аяксе» предполагалось заменить на жидкостный, который, с одной стороны, должен был защищать двигатель, с другой — способствовал бы каталитической реакции, которая, между тем, могла сопровождаться эндотермическим эффектом — перемещением тепла с наружной части корпуса внутрь. Теоретически охлаждение внешних частей аппараты могло быть каким угодно. Избыточное тепло, в свою очередь, предполагалось задействовать с целью повышения эффективности работы двигателя самолета. При этом данная технология позволяла бы генерировать вследствие реакции топлива и виды свободный водород.

В данный момент доступные широкой публике сведения о продолжении разработки «Аякса» отсутствуют, однако исследователи считают весьма перспективным внедрение советских концепций в практику.

Китайские гиперзвуковые аппараты

Конкурентом России и США на рынке гиперзвуковых решений становится Китай. В числе самых известных разработок инженеров из КНР — летательный аппарат WU-14. Он представляет собой гиперзвуковой управляемый планер, размещаемый на баллистической ракете.

МБР запускает летательный аппарат в космос, откуда машина резко пикирует вниз, развивая гиперзвуковую скорость. Китайский аппарат может монтироваться на разных МБР, обладающих дальностью от 2 до 12 тыс. км. Установлено, что в ходе тестов аппарат WU-14 смог развить скорость, превышающую 12 тыс. км/ч, превратившись, таким образом, в самый быстрый гиперзвуковой самолет по версии некоторых аналитиков.

Вместе с тем многие исследователи считают, что китайскую разработку не вполне правомерно относить к классу самолетов. Так, распространена версия, по которой аппарат следует классифицировать именно как боеголовку. Причем весьма эффективную. При полете вниз с отмеченной скоростью даже самые современные системы ПРО не смогут гарантировать перехвата соответствующей цели.

Можно отметить, что разработками гиперзвуковых аппаратов, задействуемых в военных целях, занимаются также Россия и США. При этом российская концепция, по которой предполагается создавать машины соответствующего типа, значительно отличается, как свидетельствуют данные в некоторых СМИ, от технологических принципов, реализуемых американцами и китайцами. Так, разработчики из РФ концентрируют усилия в области создания летательных аппаратов, оснащенных прямоточным двигателем, способных запускаться с земли. Россия планирует сотрудничество в этом направлении с Индией. Гиперзвуковые аппараты, создаваемые по российской концепции, как считают некоторые аналитики, характеризуются меньшей стоимостью и более широкой областью применения.

Вместе с тем гиперзвуковой самолет России, о котором мы сказали выше (Ю-71), предполагает, как считают некоторые аналитики, как раз-таки размещения на МБР. Если этот тезис окажется верным, то можно будет говорить о том, что инженеры из РФ работают сразу по двум популярным концептуальным направлениям в строительстве гиперзвуковых летательных аппаратов.

Резюме

Итак, вероятно, самый быстрый гиперзвуковой самолет в мире, если говорить о летательных аппаратах безотносительно их классификации, это все же китайский аппарат WU-14. Хотя нужно понимать, что реальные сведения о нем, в том числе касающиеся испытаний, могут быть засекречены. Это вполне соответствует принципам китайских разработчиков, которые часто во что бы то ни стало стремятся сохранить свои военные технологии в тайне. Скорость самого быстрого гиперзвукового самолета — более 12 тыс. км/ч. Его «догоняет» американская разработка X-43A — многие эксперты считают самым скоростным именно его. Теоретически гиперзвуковой самолет X-43A, а также китайский WU-14 может догнать разработка от Orbical Science, рассчитанная на скорость более 12 тыс. км/ч.

Характеристики российского самолета Ю-71 пока что не известны широкой публике. Вполне возможно, что они будут приближены к параметрам китайского летательного аппарата. Российские инженеры также ведут разработки по гиперзвуковому самолету, способному взлетать не на базе МБР, а самостоятельно.

Текущие проекты исследователей из России, Китая и США так или иначе связаны с военной сферой. Гиперзвуковые самолеты, безотносительно их возможной классификации, рассматриваются в первую очередь как носители вооружений, скорее всего, ядерных. Однако в работах исследователей из различных стран мира встречаются тезисы о том, что «гиперзвук», подобно атомным технологиям, вполне может быть мирным.

Дело за появлением доступных и надежных решений, позволяющих организовать серийное производство машин соответствующего типа. Использование подобных аппаратов возможно в самом широком спектре отраслей хозяйственного развития. Наибольшую востребованность гиперзвуковые летательные аппараты, вероятно, найдут в космической и исследовательской индустрии.

По мере удешевления технологий производства соответствующих машин заинтересованность в инвестировании в подобные проекты могут начать проявлять транспортные бизнесы. Промышленные корпорации, поставщики различных сервисов могут начать рассматривать «гиперзвук» как инструмент повышения конкурентоспособности бизнеса в части организации международных коммуникаций.




Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении